In number theory, Bonse's inequality, named after H. Bonse,[1] relates the size of a primorial to the smallest prime that does not appear in its prime factorization. It states that for all , if are the first prime numbers, then
Barkley Rosser showed an upper bound where .[2]
See also
Notes
- ↑ Bonse, H. (1907). "Über eine bekannte Eigenschaft der Zahl 30 und ihre Verallgemeinerung". Archiv der Mathematik und Physik. 3 (12): 292–295.
- ↑ Rosser, Barkley (January 1941). "Explicit Bounds for Some Functions of Prime Numbers". American Journal of Mathematics. 63 (1): 211–232. doi:10.2307/2371291.
References
- Uspensky, J. V.; Heaslet, M. A. (1939). Elementary Number Theory. New York: McGraw Hill. p. 87.